Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB001700
Identification
Name: Ubiquinone-8
Description:Ubiquinone-8 is a member of the chemical class known as Polyprenylbenzoquinones. These are compounds containing a polyisoprene chain attached to a quinone at the second ring position. Ubiquione-8 has isoprene units. Normally in Pseudomonas aeruginosa the active form of Ubiquinone has 8 isoprene units (Ubiquinone-8) and in humans it normally has 10. Ubiquionone is involved in cellular respiration. It is fat-soluble and is therefore mobile in cellular membranes; it plays a unique role in the electron transport chain (ETC). In the inner bacterial membrane, electrons from NADH and succinate pass through the ETC to the oxygen, which is then reduced to water. The transfer of electrons through ETC results in the pumping of H+ across the membrane creating a proton gradient across the membrane, which is used by ATP synthase (located on the membrane) to generate ATP.
Structure
Thumb
Synonyms:
  • 2,3-Dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaen-1-yl]-1,4-benzoquinone
  • Coenzyme Q8
  • Coenzyme-Q8
  • Coenzyme-Q8
  • COQ8
  • Ubiquinone 8
  • Ubiquinone(8)
  • Ubiquinone-8
Chemical Formula: C49H74O4
Average Molecular Weight: 727.1095
Monoisotopic Molecular Weight: 726.558710856
InChI Key: ICFIZJQGJAJRSU-SGHXUWJISA-N
InChI:InChI=1S/C49H74O4/c1-36(2)20-13-21-37(3)22-14-23-38(4)24-15-25-39(5)26-16-27-40(6)28-17-29-41(7)30-18-31-42(8)32-19-33-43(9)34-35-45-44(10)46(50)48(52-11)49(53-12)47(45)51/h20,22,24,26,28,30,32,34H,13-19,21,23,25,27,29,31,33,35H2,1-12H3/b37-22+,38-24+,39-26+,40-28+,41-30+,42-32+,43-34+
CAS number: 2394-68-5
IUPAC Name:2,3-dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaen-1-yl]cyclohexa-2,5-diene-1,4-dione
Traditional IUPAC Name: ubiquinone 8
SMILES:COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as ubiquinones. These are coenzyme Q derivatives containing a 5, 6-dimethoxy-3-methyl(1,4-benzoquinone) moiety to which an isoprenyl group is attached at ring position 2(or 6).
Kingdom Organic compounds
Super ClassLipids and lipid-like molecules
Class Prenol lipids
Sub ClassQuinone and hydroquinone lipids
Direct Parent Ubiquinones
Alternative Parents
Substituents
  • Polyterpenoid
  • Polyprenylbenzoquinone
  • Ubiquinone skeleton
  • Quinone
  • P-benzoquinone
  • Vinylogous ester
  • Cyclic ketone
  • Ketone
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic homomonocyclic compound
Molecular Framework Aliphatic homomonocyclic compounds
External Descriptors
Physical Properties
State: Not Available
Charge:0
Melting point: Not Available
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility0.000238 mg/mLALOGPS
logP9.39ALOGPS
logP13.84ChemAxon
logS-6.5ALOGPS
pKa (Strongest Basic)-4.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area52.6 Å2ChemAxon
Rotatable Bond Count25ChemAxon
Refractivity239 m3·mol-1ChemAxon
Polarizability93.25 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Membrane
Reactions:
2 Hydrogen ion + Hydrogen (gas) + Ubiquinone-8 > Ubiquinol-8 +2 Hydrogen ion
2 Hydrogen ion + Oxygen + Ubiquinol-8 > Water + Ubiquinone-8 +2 Hydrogen ion
2 Hydrogen ion + Nitrate + Ubiquinol-8 > Water + Nitrite + Ubiquinone-8 +2 Hydrogen ion
Ubiquinol-8 + Nitrate > Ubiquinone-8 + Water + Nitrite
Glycerol 3-phosphate + Ubiquinone-8 > Dihydroxyacetone phosphate + Ubiquinol-8
2 Hydrogen ion + Ubiquinone-8 + Formic acid > Ubiquinol-8 + Carbon dioxide + Hydrogen ion
Ubiquinone-8 + D-Glucose + Water > Ubiquinol-8 + Gluconic acid + Hydrogen ion
Ubiquinone-8 + Succinic acid > Fumaric acid + Ubiquinol-8
4 Hydrogen ion + NADH + Ubiquinone-8 > NAD + Ubiquinol-8 +3 Hydrogen ion
Glycolic acid + Ubiquinone-8 > Glyoxylic acid + Ubiquinol-8
L-Lactic acid + Ubiquinone-8 > Pyruvic acid + Ubiquinol-8
Ubiquinone-8 + periplasmic protein disulfide isomerase I (reduced) > Ubiquinol-8 + periplasmic protein disulfide isomerase I (oxidized)
3 Ubiquinol-8 + 2 Hydrogen ion + Nitrite >3 Ubiquinone-8 +2 Water + Ammonium
Water + Pyruvic acid + Ubiquinone-8 > Acetic acid + Carbon dioxide + Ubiquinol-8
4,5-Dihydroorotic acid + Ubiquinone-8 > Orotic acid + Ubiquinol-8
Hydrogen ion + NADH + Ubiquinone-8 > NAD + Ubiquinol-8
D-Lactic acid + Ubiquinone-8 > Pyruvic acid + Ubiquinol-8
L-Malic acid + Ubiquinone-8 > Oxalacetic acid + Ubiquinol-8
L-Aspartic acid + Ubiquinone-8 > Hydrogen ion + Iminoaspartic acid + Ubiquinol-8
Hydrogen ion + NADPH + Ubiquinone-8 > NADP + Ubiquinol-8
2 Oxygen + Ubiquinol-8 >2 Hydrogen ion +2 Superoxide anion + Ubiquinone-8
Ubiquinone-8 + Hydrogen ion > Ubiquinol-8
Ubiquinol-8 + Oxygen > Ubiquinone-8 + Water

Pathways: Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-004i-0212133900-c86f25544d97c9e8ab2bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0035-0549561100-faeb32bb812d2639f397View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0kai-1122291000-6a0ee9e6ff71c52692d4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-004i-0000001900-c46ed8c81a84a99af90fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-056r-0100009700-0b318638bf4524a32cf2View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4r-8100019300-fbc1eba5fd3761fdc3ecView in MoNA
References
References:
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Not Available
Material Safety Data Sheet (MSDS) Not Available
External Links:
ResourceLink
CHEBI ID61683
HMDB IDNot Available
Pubchem Compound ID5283546
Kegg IDC17569
ChemSpider ID4446659
Wikipedia IDNot Available
BioCyc IDUBIQUINONE-8
EcoCyc IDUBIQUINONE-8
Ligand ExpoUQ8

Enzymes

General function:
Involved in oxidation-reduction process
Specific function:
Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation
Gene Name:
ndh
Locus Tag:
PA4538
Molecular weight:
47.4 kDa
Reactions
NADH + acceptor = NAD(+) + reduced acceptor.
General function:
Involved in magnesium ion binding
Specific function:
Pyruvate + ferricytochrome b1 + H(2)O = acetate + CO(2) + ferrocytochrome b1
Gene Name:
poxB
Locus Tag:
PA5297
Molecular weight:
62.3 kDa
Reactions
Pyruvate + ubiquinone + H(2)O = acetate + CO(2) + ubiquinol.
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhB
Locus Tag:
PA1584
Molecular weight:
26.2 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
The nitrate reductase enzyme complex allows Pseudomonas aeruginosa to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction
Gene Name:
narG
Locus Tag:
PA3875
Molecular weight:
141 kDa
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in catalytic activity
Specific function:
(S)-dihydroorotate + a quinone = orotate + a quinol
Gene Name:
pyrD
Locus Tag:
PA3050
Molecular weight:
36.1 kDa
Reactions
(S)-dihydroorotate + a quinone = orotate + a quinol.
General function:
Involved in electron carrier activity
Specific function:
Formate dehydrogenase allows Pseudomonas aeruginosa to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
fdnH
Locus Tag:
PA4811
Molecular weight:
33.8 kDa
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhA
Locus Tag:
PA1583
Molecular weight:
63.5 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhD
Locus Tag:
PA1582
Molecular weight:
13.7 kDa
General function:
Involved in respiratory electron transport chain
Specific function:
Formate dehydrogenase allows Pseudomonas aeruginosa to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556(FDN) component of the formate dehydrogenase
Gene Name:
fdnI
Locus Tag:
PA4810
Molecular weight:
23.9 kDa
General function:
Involved in catalytic activity
Specific function:
Specific function unknown
Gene Name:
glcD
Locus Tag:
PA5355
Molecular weight:
53.7 kDa
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoA
Locus Tag:
PA2637
Molecular weight:
15 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoB
Locus Tag:
PA2638
Molecular weight:
25.4 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoE
Locus Tag:
PA2640
Molecular weight:
18.1 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidation-reduction process
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone
Gene Name:
nuoH
Locus Tag:
PA2643
Molecular weight:
36.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoI
Locus Tag:
PA2644
Molecular weight:
20.6 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoJ
Locus Tag:
PA2645
Molecular weight:
17.6 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
There are 2 NADH dehydrogenases in Pseudomonas aeruginosa, however only this complex is able to use dNADH (reduced nicotinamide hypoxanthine dinucleotide, deamino-NADH) and dNADH-DB (dimethoxy- 5-methyl-6-decyl-1,4-benzoquinone) as substrates
Gene Name:
nuoK
Locus Tag:
PA2646
Molecular weight:
11 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoM
Locus Tag:
PA2648
Molecular weight:
55.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoN
Locus Tag:
PA2649
Molecular weight:
51.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
Catalyzes the oxidation of L-aspartate to iminoaspartate
Gene Name:
nadB
Locus Tag:
PA0761
Molecular weight:
60 kDa
Reactions
L-aspartate + O(2) = iminosuccinate + H(2)O(2).
General function:
Involved in iron-sulfur cluster binding
Specific function:
The nitrate reductase enzyme complex allows Pseudomonas aeruginosa to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit
Gene Name:
narH
Locus Tag:
PA3874
Molecular weight:
58.1 kDa
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in nitrate reductase activity
Specific function:
The nitrate reductase enzyme complex allows Pseudomonas aeruginosa to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit
Gene Name:
narI
Locus Tag:
PA3872
Molecular weight:
25 kDa
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in oxidoreductase activity
Specific function:
Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor
Gene Name:
glpD
Locus Tag:
PA3584
Molecular weight:
57.1 kDa
Reactions
sn-glycerol 3-phosphate + a quinone = glycerone phosphate + a quinol.
General function:
Involved in oxidoreductase activity, acting on CH-OH group of donors
Specific function:
GDH is probably involved in energy conservation rather than in sugar metabolism
Gene Name:
gcd
Locus Tag:
PA2290
Molecular weight:
86.2 kDa
Reactions
D-glucose + ubiquinone = D-glucono-1,5-lactone + ubiquinol.
General function:
Involved in 2-polyprenyl-6-methoxy-1,4-benzoquinone methyltransferase activity
Specific function:
S-adenosyl-L-methionine + 3- demethylubiquinone-9 = S-adenosyl-L-homocysteine + ubiquinone-9
Gene Name:
ubiG
Locus Tag:
PA3171
Molecular weight:
25.9 kDa
Reactions
S-adenosyl-L-methionine + 3-demethylubiquinone-n = S-adenosyl-L-homocysteine + ubiquinone-n.
S-adenosyl-L-methionine + 3-(all-trans-polyprenyl)benzene-1,2-diol = S-adenosyl-L-homocysteine + 2-methoxy-6-(all-trans-polyprenyl)phenol.
General function:
Involved in formate dehydrogenase (NAD+) activity
Specific function:
Formate dehydrogenase allows Pseudomonas aeruginosa to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit forms the active site
Gene Name:
fdnG
Locus Tag:
PA4812
Molecular weight:
104.7 kDa
Reactions
Formate + NAD(+) = CO(2) + NADH.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoF
Locus Tag:
PA2641
Molecular weight:
48.7 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in catalytic activity
Specific function:
(S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H(+)
Gene Name:
lldD
Locus Tag:
PA4771
Molecular weight:
41.1 kDa
Reactions
(S)-lactate + 2 ferricytochrome c = pyruvate + 2 ferrocytochrome c + 2 H(+).
General function:
Involved in oxidoreductase activity, acting on NADH or NADPH
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoC
Locus Tag:
PA2639
Molecular weight:
68.3 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in electron carrier activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoG
Locus Tag:
PA2642
Molecular weight:
99 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in NADH dehydrogenase (ubiquinone) activity
Specific function:
NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient
Gene Name:
nuoL
Locus Tag:
PA2647
Molecular weight:
66.2 kDa
Reactions
NADH + quinone = NAD(+) + quinol.
General function:
Involved in oxidoreductase activity
Specific function:
Catalytic subunit of the periplasmic nitrate reductase (NAP). Only expressed at high levels during aerobic growth. NapAB complex receives electrons from the membrane-anchored tetraheme protein napC, thus allowing electron flow between membrane and periplasm. Essential function for nitrate assimilation and may have a role in anaerobic metabolism
Gene Name:
napA
Locus Tag:
PA1174
Molecular weight:
92.9 kDa
Reactions
Nitrite + acceptor = nitrate + reduced acceptor.
General function:
Involved in malate dehydrogenase (quinone) activity
Specific function:
(S)-malate + a quinone = oxaloacetate + reduced quinone
Gene Name:
mqo
Locus Tag:
PA3452
Molecular weight:
57.2 kDa
Reactions
(S)-malate + a quinone = oxaloacetate + reduced quinone.
General function:
Involved in iron-sulfur cluster binding
Specific function:
Specific function unknown
Gene Name:
glcF
Locus Tag:
PA5353
Molecular weight:
44.7 kDa
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhC
Locus Tag:
PA1581
Molecular weight:
13.7 kDa
General function:
Involved in coenzyme binding
Specific function:
Specific function unknown
Gene Name:
mdaB
Locus Tag:
PA2580
Molecular weight:
22 kDa
General function:
Involved in cytochrome bo3 ubiquinol oxidase activity
Specific function:
Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain of Pseudomonas aeruginosa that predominates when cells are grown at high aeration
Gene Name:
cyoA
Locus Tag:
PA1317
Molecular weight:
36.6 kDa
Reactions
Ubiquinol-8 + O(2) = Ubiquinone-8 + H(2)O.
General function:
Involved in catalytic activity
Specific function:
Specific function unknown
Gene Name:
glcE
Locus Tag:
PA5354
Molecular weight:
38.2 kDa
General function:
Involved in cytochrome o ubiquinol oxidase activity
Specific function:
Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain of Pseudomonas aeruginosa that predominates when cells are grown at high aeration
Gene Name:
cyoD
Locus Tag:
PA1320
Molecular weight:
12.1 kDa
General function:
Involved in protein disulfide oxidoreductase activity
Specific function:
Required for disulfide bond formation in some periplasmic proteins such as phoA or ompA. Acts by transferring its disulfide bond to other proteins and is reduced in the process. DsbA is reoxidized by dsbB. It is required for pilus biogenesis
Gene Name:
dsbA
Locus Tag:
PA5489
Molecular weight:
23.4 kDa
General function:
Involved in oxidoreductase activity, acting on the CH-OH group of donors, quinone or similar compound as acceptor
Specific function:
Aldose sugar dehydrogenase with broad substrate specificity. The physiological substrate is unknown. Can oxidize glucose to gluconolactone. Can also utilize D-arabinose, L- arabinose and 2-deoxy-glucose. Has higher activity towards oligomeric sugars, such as maltose, maltotriose or cellobiose. It may function to input sugar-derived electrons into the respiratory network
Gene Name:
yliI
Locus Tag:
PA1112
Molecular weight:
41.4 kDa
General function:
Energy production and conversion
Specific function:
Small subunit of the periplasmic nitrate reductase (NAP). Only expressed at high levels during aerobic growth. NapAB complex receives electrons from the membrane-anchored tetraheme napC protein, thus allowing electron flow between membrane and periplasm. Essential function for nitrate assimilation and may have a role in anaerobic metabolism
Gene Name:
napB
Locus Tag:
PA1173
Molecular weight:
17.9 kDa
General function:
Involved in cytochrome-c oxidase activity
Specific function:
Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain of Pseudomonas aeruginosa that predominates when cells are grown at high aeration. This ubiquinol oxidase shows proton pump activity across the membrane in addition to the electron transfer
Gene Name:
cyoB
Locus Tag:
PA1318
Molecular weight:
73.9 kDa
Reactions
Ubiquinol-8 + O(2) = Ubiquinone-8 + H(2)O.
General function:
Involved in protein disulfide oxidoreductase activity
Specific function:
Required for disulfide bond formation in some periplasmic proteins such as phoA or ompA. Acts by oxidizing the dsbA protein
Gene Name:
dsbB
Locus Tag:
PA0538
Molecular weight:
18.1 kDa
General function:
Involved in heme binding
Specific function:
Mediates electron flow from quinones to the napAB complex
Gene Name:
napC
Locus Tag:
PA1172
Molecular weight:
22.7 kDa
General function:
Involved in heme-copper terminal oxidase activity
Specific function:
Cytochrome o terminal oxidase complex is the component of the aerobic respiratory chain of Pseudomonas aeruginosa that predominates when cells are grown at high aeration
Gene Name:
cyoC
Locus Tag:
PA1319
Molecular weight:
22.8 kDa
Reactions
Ubiquinol-8 + O(2) = Ubiquinone-8 + H(2)O.
General function:
Involved in unfolded protein binding
Specific function:
Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with the NarI subunit on the membrane
Gene Name:
narJ
Locus Tag:
PA3873
Molecular weight:
27.3 kDa