Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000107
Identification
Name: Succinic acid
Description:Succinic acid is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle capable of donating electrons to the electron transfer chain. SDH with a covalently attached FAD prosthetic group, binds enzyme substrates (succinate and fumarate) and physiological regulators (oxaloacetate and ATP). Oxidizing succinate links SDH to the fast-cycling Krebs cycle portion where it participates in the breakdown of acetyl-CoA throughout the whole Krebs cycle.
Structure
Thumb
Synonyms:
  • 1,2-Ethanedicarboxylate
  • 1,2-Ethanedicarboxylic acid
  • 1,4-Butanedioate
  • 1,4-Butanedioic acid
  • Amber acid
  • Asuccin
  • Butanedioate
  • Butanedioic acid
  • Dihydrofumarate
  • Dihydrofumaric acid
  • Ethylenesuccinate
  • Ethylenesuccinic acid
  • Katasuccin
  • Suc
  • Succ
  • Succinate
  • Succinic acid
  • Wormwood acid
Chemical Formula: C4H6O4
Average Molecular Weight: 118.088
Monoisotopic Molecular Weight: 118.02660868
InChI Key: KDYFGRWQOYBRFD-UHFFFAOYSA-N
InChI:InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)
CAS number: 110-15-6
IUPAC Name:butanedioic acid
Traditional IUPAC Name: succinic acid
SMILES:OC(=O)CCC(O)=O
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as dicarboxylic acids and derivatives. These are organic compounds containing exactly two carboxylic acid groups.
Kingdom Organic compounds
Super ClassOrganic acids and derivatives
Class Carboxylic acids and derivatives
Sub ClassDicarboxylic acids and derivatives
Direct Parent Dicarboxylic acids and derivatives
Alternative Parents
Substituents
  • Fatty acid
  • Dicarboxylic acid or derivatives
  • Carboxylic acid
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular Framework Aliphatic acyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-2
Melting point: 185-188 °C
Experimental Properties:
PropertyValueSource
Water Solubility:83.2 mg/mL [YALKOWSKY,SH & HE,Y (2003)]PhysProp
LogP:-0.59 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility211.0 mg/mLALOGPS
logP-0.53ALOGPS
logP-0.4ChemAxon
logS0.25ALOGPS
pKa (Strongest Acidic)3.55ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area74.6 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity23.54 m3·mol-1ChemAxon
Polarizability10.14 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
O-Succinyl-L-homoserine + Hydrogen sulfide <> L-Homocysteine + Succinic acid
4,5-Dihydroorotic acid + Fumaric acid <> Orotic acid + Succinic acid
Cystathionine + Succinic acid <> O-Succinyl-L-homoserine + L-Cysteine
2-Hydroxy-2,4-pentadienoate + Succinic acid <> 2-Hydroxy-6-ketononadienedicarboxylate + Water
O-Succinyl-L-homoserine + L-Cysteine <> L-Cystathionine + Succinic acid
O-Succinyl-L-homoserine + Selenocysteine <> Selenocystathionine + Succinic acid
Taurine + alpha-Ketoglutarate + Oxygen <> Sulfite + Aminoacetaldehyde + Succinic acid + Carbon dioxide
Hydrogen ion + 2-Ketobutyric acid + Succinic acid + Ammonia O-Succinyl-L-homoserine + Water
Fumaric acid + a menaquinol > a menaquinone + Succinic acid
a methylated nucleobase within DNA + Oxygen + Oxoglutaric acid Hydrogen ion + a nucleobase within DNA + Carbon dioxide + Formaldehyde + Succinic acid
Taurine + Oxoglutaric acid + Oxygen > Hydrogen ion + Aminoacetaldehyde + Sulfite + Succinic acid + Carbon dioxide
N1-Methyladenine + Oxygen + Oxoglutaric acid > Hydrogen ion + Adenine + Carbon dioxide + Formaldehyde + Succinic acid
N3-Methylcytosine + Oxygen + Oxoglutaric acid > Hydrogen ion + Cytosine + Carbon dioxide + Formaldehyde + Succinic acid
1-Ethyladenine + Oxygen + Oxoglutaric acid > Adenine + Carbon dioxide + Acetaldehyde + Succinic acid
N<SUP>2</SUP>-succinylglutamate + Water > Succinic acid + L-Glutamate
a ubiquinone + Succinic acid <> a ubiquinol + Fumaric acid
DNA-base-CH(3) + Oxoglutaric acid + Oxygen > DNA-base + Formaldehyde + Succinic acid + Carbon dioxide
Succinic acid semialdehyde + NADP + Water > Succinic acid + NADPH
Succinic acid semialdehyde + NAD(P)(+) + Water > Succinic acid + NAD(P)H
Taurine + Oxoglutaric acid + Oxygen > Sulfite + Aminoacetaldehyde + Succinic acid + Carbon dioxide
Succinic acid semialdehyde + NAD + NADP + Water <> Succinic acid + NADH + NADPH +2 Hydrogen ion
Succinic acid + Quinone <> Fumaric acid + Hydroquinone
2-Hydroxy-6-ketononadienedicarboxylate + Water + 2-Hydroxy-6-ketononatrienedioate <> Succinic acid + Fumaric acid
Taurine + Oxoglutaric acid + Oxygen > Sulfite + Succinic acid + Aminoacetaldehyde + Carbon dioxide + Sulfite
Taurine + Oxoglutaric acid + Oxygen > Sulfite + Succinic acid + Carbon dioxide + Hydrogen ion + Aminoacetaldehyde + Sulfite
Succinyl-CoA + Phosphate + Guanosine diphosphate + Succinyl-CoA <> Succinic acid + Coenzyme A + Guanosine triphosphate
Succinic acid + Ubiquinone-10 + FAD <> Fumaric acid + QH2 + FADH2
Succinyl-CoA + Adenosine diphosphate + Phosphate + Succinyl-CoA + ADP > Adenosine triphosphate + Coenzyme A + Succinic acid
Succinic acid + Ubiquinone-1 > Ubiquinol-1 + Fumaric acid
Succinic acid + Ubiquinone-2 > Fumaric acid + Ubiquinol-2
Succinic acid + Ubiquinone-3 > Fumaric acid + Ubiquinol-3
Succinic acid + Ubiquinone-4 > Fumaric acid + Ubiquinol-4
Succinic acid + Ubiquinone-5 > Fumaric acid + Ubiquinol-5
Succinic acid + Ubiquinone-6 > Fumaric acid + Ubiquinol-6
Succinic acid + Ubiquinone-7 > Fumaric acid + Ubiquinol-7
Succinic acid + Ubiquinone-8 > Fumaric acid + Ubiquinol 8 + Ubiquinol-8
Succinic acid + Coenzyme Q9 > Fumaric acid + Ubiquinol-9
Succinic acid + Ubiquinone-10 > Fumaric acid + Ubiquinol-10 + Ubiquinol-10
N2-succinylglutamate + Water + N2-succinylglutamate > L-Glutamic acid + Succinic acid + L-Glutamate
Succinic acid semialdehyde + Water + NADP > NADPH +2 Hydrogen ion + Succinic acid + NADPH
Succinic acid + Propionyl-CoA + Propionyl-CoA > Propionic acid + Succinyl-CoA + Succinyl-CoA
Isocitric acid + Isocitric acid <> Succinic acid + Glyoxylic acid
More...

Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-0002-0920000000-f286e6204a4163b823baView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0002-0900000000-bf336910bb37d7f78140View in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS)splash10-006t-9800000000-df5ff4e8457d2d4ef919View in MoNA
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-00c1-3930000000-3cc18e719822b5af661aView in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-00di-9300000000-f9dc864d93a09d3074f9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-00di-9300000000-76c151de384928b2256fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Negative (Annotated)splash10-01b9-7900000000-51d2341c097f04827944View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (Unknown) , Positivesplash10-004i-9000000000-93b4807ae6275a3e59d7View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-03dj-0971010000-37d214dc7a8fdc26116bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-014i-9000000000-249222ac742c1634cec9View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-00di-9000000000-6897d49472dba6a34a27View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negativesplash10-0udi-0490000000-d138f8023125921b4b82View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negativesplash10-014i-1900000000-4ffdabe5bde527b66982View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negativesplash10-00di-9100000000-c20baa818f5ff5f678c1View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negativesplash10-00di-9000000000-7a49a18aa6fcb2540a12View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negativesplash10-00di-9000000000-9955aeb0e5a9f88ae70eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negativesplash10-00di-9000000000-7e1f195f111b4eafb4faView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-00xr-9400000000-e50afc90e20cd420ba9bView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-00xr-9600000000-43167f2549cbb5d5f7e8View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
MSMass Spectrum (Electron Ionization)splash10-05di-9100000000-c629bea41d0d3d896425View in MoNA
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
1D NMR13C NMR SpectrumNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,1H] 2D NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Borenstein DG, Gibbs CA, Jacobs RP: Gas-liquid chromatographic analysis of synovial fluid: volatile short-chain fatty acids in septic arthritis. Ann Rheum Dis. 1983 Aug;42(4):362-7. Pubmed: 6882030
  • Briere JJ, Favier J, El Ghouzzi V, Djouadi F, Benit P, Gimenez AP, Rustin P: Succinate dehydrogenase deficiency in human. Cell Mol Life Sci. 2005 Oct;62(19-20):2317-24. Pubmed: 16143825
  • Frenkel G, Peterson RN, Freund M: Oxidative and glycolytic metabolism of semen components by washed guinea pig spermatozoa. Fertil Steril. 1975 Feb;26(2):144-7. Pubmed: 1126459
  • Groenen PM, Engelke UF, Wevers RA, Hendriks JC, Eskes TK, Merkus HM, Steegers-Theunissen RP: High-resolution 1H NMR spectroscopy of amniotic fluids from spina bifida fetuses and controls. Eur J Obstet Gynecol Reprod Biol. 2004 Jan 15;112(1):16-23. Pubmed: 14687733
  • Guneral F, Bachmann C: Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem. 1994 Jun;40(6):862-6. Pubmed: 8087979
  • Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69. Pubmed: 8412012
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Magera MJ, Helgeson JK, Matern D, Rinaldo P: Methylmalonic acid measured in plasma and urine by stable-isotope dilution and electrospray tandem mass spectrometry. Clin Chem. 2000 Nov;46(11):1804-10. Pubmed: 11067816
  • Meijer-Severs GJ, van Santen E: Short-chain fatty acids and succinate in feces of healthy human volunteers and their correlation with anaerobe cultural counts. Scand J Gastroenterol. 1987 Aug;22(6):672-6. Pubmed: 3659829
  • Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Gueant JL: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology. 1998;44(5):300-4. Pubmed: 9693263
  • Ren LC, Huang XY, Long JH: [Effects of succinic acid on the function of in vitro cultured human fibroblasts] Zhonghua Shao Shang Za Zhi. 2004 Feb;20(1):34-6. Pubmed: 15059451
  • Rustin P, Rotig A: Inborn errors of complex II--unusual human mitochondrial diseases. Biochim Biophys Acta. 2002 Jan 17;1553(1-2):117-22. Pubmed: 11803021
  • Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. Pubmed: 12097436
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Vijayendran, C., Barsch, A., Friehs, K., Niehaus, K., Becker, A., Flaschel, E. (2008). "Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling." Genome Biol 9:R72. Pubmed: 18402659
  • Wevers RA, Engelke U, Heerschap A: High-resolution 1H-NMR spectroscopy of blood plasma for metabolic studies. Clin Chem. 1994 Jul;40(7 Pt 1):1245-50. Pubmed: 8013094
  • Wevers RA, Engelke U, Wendel U, de Jong JG, Gabreels FJ, Heerschap A: Standardized method for high-resolution 1H-NMR of cerebrospinal fluid. Clin Chem. 1995 May;41(5):744-51. Pubmed: 7729054
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Zhang TM, Sener A, Malaisse WJ: Hydrolysis of succinic acid dimethyl ester in rat pancreatic islets. Biochem Mol Med. 1995 Aug;55(2):131-7. Pubmed: 7582870
Synthesis Reference: Berglund, Kris Arvid; Andersson, Christian; Rova, Ulrika. Process for the production of succinic acid. PCT Int. Appl. (2007), 30pp.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID15741
HMDB IDHMDB00254
Pubchem Compound ID1110
Kegg IDC00042
ChemSpider ID1078
WikipediaSuccinic acid
BioCyc IDSUC
EcoCyc IDSUC
Ligand ExpoSIN

Enzymes

General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhB
Locus Tag:
PA1584
Molecular weight:
26.2 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in catalytic activity
Specific function:
(S)-dihydroorotate + a quinone = orotate + a quinol
Gene Name:
pyrD
Locus Tag:
PA3050
Molecular weight:
36.1 kDa
Reactions
(S)-dihydroorotate + a quinone = orotate + a quinol.
General function:
Involved in ATP binding
Specific function:
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
Gene Name:
sucC
Locus Tag:
PA1588
Molecular weight:
41.5 kDa
Reactions
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA.
General function:
Involved in isocitrate lyase activity
Specific function:
Catalyzes the formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle. May be involved in the assimilation of one-carbon compounds via the isocitrate lyase- positive serine pathway
Gene Name:
aceA
Locus Tag:
PA2634
Molecular weight:
58.9 kDa
Reactions
Isocitrate = succinate + glyoxylate.
General function:
Involved in electron carrier activity
Specific function:
Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth
Gene Name:
sdhA
Locus Tag:
PA1583
Molecular weight:
63.5 kDa
Reactions
Succinate + acceptor = fumarate + reduced acceptor.
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhD
Locus Tag:
PA1582
Molecular weight:
13.7 kDa
General function:
Involved in metallopeptidase activity
Specific function:
Catalyzes the hydrolysis of N-succinyl-L,L- diaminopimelic acid (SDAP), forming succinate and LL-2,6- diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls
Gene Name:
dapE
Locus Tag:
PA1162
Molecular weight:
41.1 kDa
Reactions
N-succinyl-LL-2,6-diaminoheptanedioate + H(2)O = succinate + LL-2,6-diaminoheptanedioate.
General function:
Involved in catalytic activity
Specific function:
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
Gene Name:
sucD
Locus Tag:
PA1589
Molecular weight:
30.3 kDa
Reactions
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA.
General function:
Involved in electron carrier activity
Specific function:
Catalyzes the oxidation of L-aspartate to iminoaspartate
Gene Name:
nadB
Locus Tag:
PA0761
Molecular weight:
60 kDa
Reactions
L-aspartate + O(2) = iminosuccinate + H(2)O(2).
General function:
Involved in oxidoreductase activity
Specific function:
Succinate semialdehyde + NAD(P)(+) + H(2)O = succinate + NAD(P)H
Gene Name:
gabD
Locus Tag:
PA0265
Molecular weight:
51.6 kDa
Reactions
Succinate semialdehyde + NADP(+) + H(2)O = succinate + NADPH.
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the conversion of taurine and alpha ketoglutarate to sulfite, aminoacetaldehyde and succinate. Required for the utilization of taurine (2-aminoethanesulfonic acid) as an alternative sulfur source. Pentane-sulfonic acid, 3- (N-morpholino)propanesulfonic acid and 1,3-dioxo-2- isoindolineethanesulfonic acid are also substrates for this enzyme
Gene Name:
tauD
Locus Tag:
PA3935
Molecular weight:
31 kDa
Reactions
Taurine + 2-oxoglutarate + O(2) = sulfite + aminoacetaldehyde + succinate + CO(2).
General function:
Involved in succinate dehydrogenase activity
Specific function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH)
Gene Name:
sdhC
Locus Tag:
PA1581
Molecular weight:
13.7 kDa
General function:
Involved in catalytic activity
Specific function:
Catalyzes the formation of pyruvate and succinate from 2-methylisocitrate
Gene Name:
prpB
Locus Tag:
PA0796
Molecular weight:
32.1 kDa
Reactions
(2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate = pyruvate + succinate.

Transporters

General function:
Involved in symporter activity
Specific function:
Responsible for the aerobic transport of the dicarboxylates fumarate, L- and D-malate and to a lesser extent succinate, from the periplasm across the inner membrane
Gene Name:
dctA
Locus Tag:
PA1183
Molecular weight:
46 kDa