Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000103
Identification
Name: Riboflavin
Description:Riboflavin, also known as vitamin B2, is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. As such, vitamin B2 is required for a wide variety of cellular processes. Like the other B vitamins, it plays a key role in energy metabolism, and is required for the metabolism of fats, ketone bodies, carbohydrates, and proteins. (Wikipedia)
Structure
Thumb
Synonyms:
  • (-)-Riboflavin
  • 1-Deoxy-1-(3,4-dihydro-7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10(2H)-yl)-D-ribitol
  • 6,7-Dimethyl-9-D-ribitylisoalloxazine
  • 6,7-Dimethyl-9-ribitylisoalloxazine
  • 7,8-Dimethyl-10-(D-ribo-2,3,4,5-tetrahydroxypentyl)-Benzo[g]pteridine-2,4(3H,10H)-dione
  • Beflavin
  • Beflavine
  • Benzo[g]pteridine riboflavin deriv.
  • E 101
  • Flavaxin
  • Flavin BB
  • Flaxain
  • Food Yellow 15
  • Hyre
  • Lactobene
  • Lactoflavin
  • Lactoflavine
  • Ribipca
  • Ribocrisina
  • Riboderm
  • Riboflavine
  • Ribosyn
  • Ribotone
  • Ribovel
  • Russupteridine yellow I
  • Russupteridine yellow III
  • San Yellow B
  • Vitaflavine
  • Vitamin B2
  • Vitamin B2
  • Vitamin G
  • Vitasan B2
Chemical Formula: C17H20N4O6
Average Molecular Weight: 376.3639
Monoisotopic Molecular Weight: 376.138284392
InChI Key: AUNGANRZJHBGPY-SCRDCRAPSA-N
InChI:InChI=1S/C17H20N4O6/c1-7-3-9-10(4-8(7)2)21(5-11(23)14(25)12(24)6-22)15-13(18-9)16(26)20-17(27)19-15/h3-4,11-12,14,22-25H,5-6H2,1-2H3,(H,20,26,27)/t11-,12+,14-/m0/s1
CAS number: 83-88-5
IUPAC Name:7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione
Traditional IUPAC Name: riboflavin
SMILES:CC1=C(C)C=C2N(C[C@H](O)[C@H](O)[C@H](O)CO)C3=NC(=O)NC(=O)C3=NC2=C1
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as flavins. These are compounds containing a flavin (7,8-dimethyl-benzo[g]pteridine-2,4-dione) moiety, with a structure characterized by an isoalloaxzine tricyclic ring.
Kingdom Organic compounds
Super ClassOrganoheterocyclic compounds
Class Pteridines and derivatives
Sub ClassAlloxazines and isoalloxazines
Direct Parent Flavins
Alternative Parents
Substituents
  • Flavin
  • Quinoxaline
  • Hydroxypyrimidine
  • Pyrimidone
  • Benzenoid
  • Pyrimidine
  • Pyrazine
  • Heteroaromatic compound
  • Secondary alcohol
  • Polyol
  • 1,2-diol
  • Azacycle
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:-1
Melting point: 290 °C
Experimental Properties:
PropertyValueSource
Water Solubility:0.0847 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:-1.46 [HANSCH,C ET AL. (1995)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility0.657 mg/mLALOGPS
logP-1.1ALOGPS
logP-0.92ChemAxon
logS-2.8ALOGPS
pKa (Strongest Acidic)6.97ChemAxon
pKa (Strongest Basic)0.76ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count5ChemAxon
Polar Surface Area155.05 Å2ChemAxon
Rotatable Bond Count5ChemAxon
Refractivity96.27 m3·mol-1ChemAxon
Polarizability37.5 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-004i-0019000000-86365dedafa031aa7787View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-0006-4390000000-ac1b59ab7cc2209f4241View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-00dj-4900000000-72d33eb27b9bd6a13d9eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positivesplash10-004l-0569000000-874b71fdc78d04853bf0View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-0a4i-0091000000-a82c54d3153103fcdb1fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Ajayi OA: Bioavailability of riboflavin from fortified palm juice. Plant Foods Hum Nutr. 1989 Dec;39(4):375-80. Pubmed: 2631092
  • Alexander M, Emanuel G, Golin T, Pinto JT, Rivlin RS: Relation of riboflavin nutriture in healthy elderly to intake of calcium and vitamin supplements: evidence against riboflavin supplementation. Am J Clin Nutr. 1984 Apr;39(4):540-6. Pubmed: 6546833
  • Baeckert PA, Greene HL, Fritz I, Oelberg DG, Adcock EW: Vitamin concentrations in very low birth weight infants given vitamins intravenously in a lipid emulsion: measurement of vitamins A, D, and E and riboflavin. J Pediatr. 1988 Dec;113(6):1057-65. Pubmed: 3142982
  • Bamji MS, Bhaskaram P, Jacob CM: Urinary riboflavin excretion and erythrocyte glutathione reductase activity in preschool children suffering from upper respiratory infections and measles. Ann Nutr Metab. 1987;31(3):191-6. Pubmed: 3592624
  • Bates CJ, Powers HJ: A simple fluorimetric assay for pyridoxamine phosphate oxidase in erythrocyte haemolysates: effects of riboflavin supplementation and of glucose 6-phosphate dehydrogenase deficiency. Hum Nutr Clin Nutr. 1985 Mar;39(2):107-15. Pubmed: 4019261
  • Bates CJ, Prentice AM, Paul AA, Prentice A, Sutcliffe BA, Whitehead RG: Riboflavin status in infants born in rural Gambia, and the effect of a weaning food supplement. Trans R Soc Trop Med Hyg. 1982;76(2):253-8. Pubmed: 7101408
  • Belko AZ, Obarzanek E, Roach R, Rotter M, Urban G, Weinberg S, Roe DA: Effects of aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally deficient young women. Am J Clin Nutr. 1984 Sep;40(3):553-61. Pubmed: 6475825
  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D. (2009). "Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli." Nat Chem Biol 5:593-599. Pubmed: 19561621
  • Boisvert WA, Mendoza I, Castaneda C, De Portocarrero L, Solomons NW, Gershoff SN, Russell RM: Riboflavin requirement of healthy elderly humans and its relationship to macronutrient composition of the diet. J Nutr. 1993 May;123(5):915-25. Pubmed: 8487103
  • Booth CK, Clark T, Fenn A: Folic acid, riboflavin, thiamine, and vitamin B-6 status of a group of first-time blood donors. Am J Clin Nutr. 1998 Nov;68(5):1075-80. Pubmed: 9808225
  • Brun TA, Chen J, Campbell TC, Boreham J, Feng Z, Parpia B, Shen TF, Li M: Urinary riboflavin excretion after a load test in rural China as a measure of possible riboflavin deficiency. Eur J Clin Nutr. 1990 Mar;44(3):195-206. Pubmed: 2369885
  • Dror Y, Stern F, Komarnitsky M: Optimal and stable conditions for the determination of erythrocyte glutathione reductase activation coefficient to evaluate riboflavin status. Int J Vitam Nutr Res. 1994;64(4):257-62. Pubmed: 7883462
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kodentsova VM, Vrzhesinskaya OA, Spirichev VB: Fluorometric riboflavin titration in plasma by riboflavin-binding apoprotein as a method for vitamin B2 status assessment. Ann Nutr Metab. 1995;39(6):355-60. Pubmed: 8678471
  • Maiani G, Mobarhan S, Nicastro A, Virgili F, Scaccini C, Ferro-Luzzi A: [Determination of glutathione reductase activity in erythrocytes and whole blood as an indicator of riboflavin nutrition] Acta Vitaminol Enzymol. 1983;5(3):171-8. Pubmed: 6650303
  • Mathew JL, Kabi BC, Rath B: Anti-oxidant vitamins and steroid responsive nephrotic syndrome in Indian children. J Paediatr Child Health. 2002 Oct;38(5):450-37. Pubmed: 12354259
  • Mikalunas V, Fitzgerald K, Rubin H, McCarthy R, Craig RM: Abnormal vitamin levels in patients receiving home total parenteral nutrition. J Clin Gastroenterol. 2001 Nov-Dec;33(5):393-6. Pubmed: 11606856
  • Mulherin DM, Thurnham DI, Situnayake RD: Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann Rheum Dis. 1996 Nov;55(11):837-40. Pubmed: 8976642
  • Rao PN, Levine E, Myers MO, Prakash V, Watson J, Stolier A, Kopicko JJ, Kissinger P, Raj SG, Raj MH: Elevation of serum riboflavin carrier protein in breast cancer. Cancer Epidemiol Biomarkers Prev. 1999 Nov;8(11):985-90. Pubmed: 10566553
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Switzer BR, Stark AH, Atwood JR, Ritenbaugh C, Travis RG, Wu HM: Development of a urinary riboflavin adherence marker for a wheat bran fiber community intervention trial. Cancer Epidemiol Biomarkers Prev. 1997 Jun;6(6):439-42. Pubmed: 9184778
  • Thurnham DI, Zheng SF, Munoz N, Crespi M, Grassi A, Hambidge KM, Chai TF: Comparison of riboflavin, vitamin A, and zinc status of Chinese populations at high and low risk for esophageal cancer. Nutr Cancer. 1985;7(3):131-43. Pubmed: 3878498
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Zempleni J, Galloway JR, McCormick DB: Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am J Clin Nutr. 1996 Jan;63(1):54-66. Pubmed: 8604671
  • Zhou X, Huang C, Hong J, Yao S: [Nested case-control study on riboflavin levels in blood and urine and the risk of lung cancer] Wei Sheng Yan Jiu. 2003 Nov;32(6):597-8, 601. Pubmed: 14963913
Synthesis Reference: Tishler, Max; Pfister, Karl, III; Babson, R. D.; Ladenburg, Kurt; Fleming, Ann J. Reaction between o-aminoazo compounds and barbituric acid. A new synthesis of riboflavin. Journal of the American Chemical Society (1947), 69 1487-92.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID17015
HMDB IDHMDB00244
Pubchem Compound ID6759
Kegg IDC00255
ChemSpider ID431981
WikipediaRiboflavin
BioCyc IDRIBOFLAVIN
EcoCyc IDRIBOFLAVIN
Ligand ExpoRBF

Enzymes

General function:
Involved in acid phosphatase activity
Specific function:
Dephosphorylates several organic phosphomonoesters and catalyzes the transfer of low-energy phosphate groups from phosphomonoesters to hydroxyl groups of various organic compounds. Preferentially acts on aryl phosphoesters. Might function as a broad-spectrum dephosphorylating enzyme able to scavenge both 3'- and 5'-nucleotides and also additional organic phosphomonoesters
Gene Name:
aphA
Locus Tag:
PA1409
Molecular weight:
38 kDa
Reactions
A phosphate monoester + H(2)O = an alcohol + phosphate.
General function:
Involved in riboflavin synthase activity
Specific function:
Riboflavin synthase is a bifunctional enzyme complex catalyzing the formation of riboflavin from 5-amino-6-(1'-D)- ribityl-amino-2,4(1H,3H)-pyrimidinedione and L-3,4-dihydrohy-2- butanone-4-phosphate via 6,7-dimethyl-8-lumazine. The alpha subunit catalyzes the dismutation of 6,7-dimethyl-8-lumazine to riboflavin and 5-amino-6-(1'-D)-ribityl-amino-2,4(1H,3H)- pyrimidinedione
Gene Name:
ribE
Locus Tag:
PA4053
Molecular weight:
16.4 kDa
Reactions
2 6,7-dimethyl-8-(1-D-ribityl)lumazine = riboflavin + 4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine.
General function:
Involved in FMN adenylyltransferase activity
Specific function:
ATP + riboflavin = ADP + FMN
Gene Name:
ribF
Locus Tag:
PA4561
Molecular weight:
34.3 kDa
Reactions
ATP + riboflavin = ADP + FMN.
ATP + FMN = diphosphate + FAD.
General function:
Involved in sulfite reductase (NADPH) activity
Specific function:
Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L- cysteine from sulfate
Gene Name:
cysI
Locus Tag:
PA1838
Molecular weight:
62.1 kDa
Reactions
H(2)S + 3 NADP(+) + 3 H(2)O = sulfite + 3 NADPH.