Record Information
Version 1.0
Update Date 1/22/2018 11:54:54 AM
Metabolite IDPAMDB000343
Name: Palmityl-CoA
Description:Palmityl-CoA is fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis.
  • Hexadecanoyl CoA
  • Hexadecanoyl Coenzyme A
  • Palmitoyl CoA
  • Palmitoyl coenzyme a
  • Palmitoyl-CoA
  • Palmitoyl-CoA (N-C16:0CoA)
  • Palmitoyl-Coenzyme A
  • Palmityl-CoA
  • Palmityl-Coenzyme A
  • S-Hexadecanoate
  • S-Hexadecanoate CoA
  • S-Hexadecanoate Coenzyme A
  • S-Hexadecanoic acid
  • S-Hexadecanoic acid CoA
  • S-Hexadecanoic acid Coenzyme A
  • S-Palmitoylcoenzyme a
Chemical Formula: C37H66N7O17P3S
Average Molecular Weight: 1005.943
Monoisotopic Molecular Weight: 1005.344873947
CAS number: 1763-10-6
IUPAC Name:{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(hexadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid
Traditional IUPAC Name: [(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-2-{[({3-[(2-{[2-(hexadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]methyl}-4-hydroxyoxolan-3-yl]oxyphosphonic acid
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as 2,3,4-saturated fatty acyl coas. These are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain.
Kingdom Organic compounds
Super ClassLipids and lipid-like molecules
Class Fatty Acyls
Sub ClassFatty acyl thioesters
Direct Parent 2,3,4-saturated fatty acyl CoAs
Alternative Parents
  • Coenzyme a or derivatives
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside 3',5'-bisphosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Beta amino acid or derivatives
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Primary aromatic amine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Organic phosphate
  • N-substituted imidazole
  • N-acyl-amine
  • Monosaccharide
  • Fatty amide
  • Heteroaromatic compound
  • Oxolane
  • Imidazole
  • Azole
  • Thiocarboxylic acid ester
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Sulfenyl compound
  • Thioether
  • Thiocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Carboxylic acid amide
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Melting point: Not Available
Experimental Properties:
Predicted Properties
Water Solubility1.74 mg/mLALOGPS
pKa (Strongest Acidic)0.83ChemAxon
pKa (Strongest Basic)4.95ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count17ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area363.63 Å2ChemAxon
Rotatable Bond Count34ChemAxon
Refractivity236.65 m3·mol-1ChemAxon
Polarizability100.19 Å3ChemAxon
Number of Rings3ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-000i-2902100202-8995491c4408cb9cd2ddView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-000i-0923300000-25204cd16c15043e7553View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-000i-1900100100-10cdb45f6d139ab32fe0View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0fa9-9882342503-dc9f6ae4b03147f90b41View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0040-3921201001-8e28a440bd4fa5cf4e70View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-057i-6900000000-e25d7582c34ed6bb66cfView in MoNA
  • Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, DeFronzo RA: Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty Acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes. 2005 Nov;54(11):3148-53. Pubmed: 16249438
  • Bakken AM, Farstad M: Identical subcellular distribution of palmitoyl-CoA and arachidonoyl-CoA synthetase activities in human blood platelets. Biochem J. 1989 Jul 1;261(1):71-6. Pubmed: 2528345
  • Berge RK, Hagen LE, Farstad M: Isolation of palmitoyl-CoA hydrolases from human blood platelets. Biochem J. 1981 Dec 1;199(3):639-47. Pubmed: 6122441
  • Carroll JE, McGuire BS, Hall CL: Fatty acyl-CoA dehydrogenase enzymes in human skeletal muscle. Clin Chim Acta. 1986 Dec 30;161(3):327-33. Pubmed: 3802539
  • Casteels M, Schepers L, Parmentier G, Eyssen HJ, Mannaerts GP: Activation and peroxisomal beta-oxidation of fatty acids and bile acid intermediates in liver from Bombina orientalis and from the rat. Comp Biochem Physiol B. 1989;92(1):129-32. Pubmed: 2706931
  • Fukao T, Watanabe H, Orii K, Takahashi Y, Hirano A, Kondo T, Yamaguchi S, Aoyama T, Kondo N: Myopathic form of very-long chain acyl-coa dehydrogenase deficiency: evidence for temperature-sensitive mild mutations in both mutant alleles in a Japanese girl. Pediatr Res. 2001 Feb;49(2):227-31. Pubmed: 11158518
  • Gohil K, Jones DA, Edwards RH: Fatty acid oxidation in mitochondria from needle biopsy samples of human skeletal muscle. Clin Sci (Lond). 1984 Feb;66(2):173-8. Pubmed: 6319070
  • Haughey NJ, Cutler RG, Tamara A, McArthur JC, Vargas DL, Pardo CA, Turchan J, Nath A, Mattson MP: Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol. 2004 Feb;55(2):257-67. Pubmed: 14755730
  • Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL: Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol. 2006 Feb 15;571(Pt 1):201-10. Epub 2005 Dec 15. Pubmed: 16357012
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Tonsgard JH, Stephens JK, Rhead WJ, Penn D, Horwitz AL, Kirschner BS, Whitington PF, Berger S, Tripp ME: Defect in fatty acid oxidation: laboratory and pathologic findings in a patient. Pediatr Neurol. 1991 Mar-Apr;7(2):125-30. Pubmed: 2059253
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Wanders RJ, van Roermund CW, de Vries CT, van den Bosch H, Schrakamp G, Tager JM, Schram AW, Schutgens RB: Peroxisomal beta-oxidation of palmitoyl-CoA in human liver homogenates and its deficiency in the cerebro-hepato-renal (Zellweger) syndrome. Clin Chim Acta. 1986 Aug 30;159(1):1-10. Pubmed: 2944672
Synthesis Reference: Not Available
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
Pubchem Compound ID986
Kegg IDC00154
ChemSpider ID14902
Wikipediapalmitoyl CoA


General function:
Involved in acetyl-CoA C-acyltransferase activity
Specific function:
Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids
Gene Name:
Locus Tag:
Molecular weight:
41.6 kDa
Acyl-CoA + acetyl-CoA = CoA + 3-oxoacyl-CoA.
General function:
Involved in catalytic activity
Specific function:
Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids
Gene Name:
Locus Tag:
Molecular weight:
61.7 kDa
ATP + a long-chain fatty acid + CoA = AMP + diphosphate + an acyl-CoA.
General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Catalyzes the dehydrogenation of acyl-CoA
Gene Name:
Locus Tag:
Molecular weight:
88.8 kDa
An acyl-CoA + FAD = a dehydrogenated acyl-CoA + FADH(2).
General function:
Involved in acyl-CoA hydrolase activity
Specific function:
Can hydrolyze a broad range of acyl-CoA thioesters. Its physiological function is not known
Gene Name:
Locus Tag:
Molecular weight:
32.9 kDa