Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB120567
Identification
Name: 3,4-dihydroxyphenylglycol
Description:A tetrol composed of ethyleneglycol having a 3,4-dihydroxyphenyl group at the 1-position.
Structure
Thumb
Synonyms:
  • (3,4-dihydroxyphenyl)ethylene glycol
  • 1-(3,4-dihydroxyphenyl)-1,2-ethanediol
  • 2-hydroxy-2-(3,4-dihydroxy)phenylethanol
  • 3,4-dihydroxyphenethyl glycol
  • 3,4-dihydroxyphenylethyl glycol
  • 3,4-dihydroxyphenylethyleneglycol
  • 3,4-Dihydroxyphenylglycol
  • β,3,4-trihydroxy phenethyl alcohol
  • DHPG
  • Dihydroxyphenylethylene glycol
  • DOPEG
Chemical Formula: C8H10O4
Average Molecular Weight: 170.165
Monoisotopic Molecular Weight: 170.0579
InChI Key: MTVWFVDWRVYDOR-QMMMGPOBSA-N
InChI:InChI=1S/C8H10O4/c9-4-8(12)5-1-2-6(10)7(11)3-5/h1-3,8-12H,4H2/t8-/m0/s1
CAS number: 28822-73-3
IUPAC Name:4-(1,2-dihydroxyethyl)benzene-1,2-diol
Traditional IUPAC Name: 3,4-dihydroxyphenylglycol
SMILES:C(O)C(O)C1(C=CC(O)=C(O)C=1)
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of chemical entities known as catechols. These are compounds containing a 1,2-benzenediol moiety.
Kingdom Chemical entities
Super ClassOrganic compounds
Class Benzenoids
Sub ClassPhenols
Direct Parent Catechols
Alternative Parents
Substituents
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Monocyclic benzene moiety
  • Secondary alcohol
  • 1,2-diol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Aromatic alcohol
  • Primary alcohol
  • Organooxygen compound
  • Alcohol
  • Aromatic homomonocyclic compound
Molecular Framework Aromatic homomonocyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:0
Melting point: 130 - 132 °C
Experimental Properties:
PropertyValueReference
Melting Point130 - 132 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP-1.01HANSCH,C ET AL. (1995)
Predicted Properties
PropertyValueSource
Water Solubility16.7 mg/mLALOGPS
logP-0.72ALOGPS
logP-0.032ChemAxon
logS-1ALOGPS
pKa (Strongest Acidic)9.21ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area80.92 Å2ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity42.8 m3·mol-1ChemAxon
Polarizability16.57 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Not Available
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-0a59-0965000000-0c949d05cfff1600a5dbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-00fr-2900000000-fbceba2f96c4ee1154aeView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-000i-9300000000-dd28ad7f56904a5c7c7eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0bvi-9200000000-b9f4f1a5509344427d53View in MoNA
LC-MS/MSLC-MS/MS Spectrum - EI-B (HITACHI M-52) , Positivesplash10-00y3-8900000000-0cb05419b964f5d6016bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-00di-0900000000-785c9bdff21d7558b9b4View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0fk9-1900000000-953cf944dd232b8d7832View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zg0-7900000000-cb8414fe82a1c814f764View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0900000000-a3cd8f79f0fba00900c3View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0aor-1900000000-ecff175233ea65fe5f8fView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0a4i-7900000000-f8265f1946f33cedd546View in MoNA
1D NMR1H NMR SpectrumNot Available
2D NMR[1H,13C] 2D NMR SpectrumNot Available
References
References:
  • Medina E, de Castro A, Romero C, Brenes M (2006)Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity. Journal of agricultural and food chemistry 54, Pubmed: 16819902
  • Roux A, Xu Y, Heilier JF, Olivier MF, Ezan E, Tabet JC, Junot C (2012)Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. Analytical chemistry 84, Pubmed: 22770225
  • DellaGreca M, Monaco P, Pinto G, Pollio A, Previtera L, Temussi F (2001)Phytotoxicity of low-molecular-weight phenols from olive mill waste waters. Bulletin of environmental contamination and toxicology 67, Pubmed: 11479664
  • Holmes LJ, Storlien LH, Smythe GA (1989)Hypothalamic monoamines associated with the cephalic phase insulin response. The American journal of physiology 256, Pubmed: 2645784
  • Howes LG, Reid JL (1985)Decreased vascular responsiveness to noradrenaline following regular ethanol consumption. British journal of clinical pharmacology 20, Pubmed: 4091997
  • Soares-da-Silva P, Caramona MM (1988)Effects of methylene blue on the uptake, release and metabolism of noradrenaline in mesenteric arterial vessels. The Journal of pharmacy and pharmacology 40, Pubmed: 2907005
  • Head RJ, Cassis LA, Barone S, Stitzel RE, de la Lande IS (1984)Neuronal deamination of endogenous and exogenous noradrenaline in the mesenteric artery of the spontaneously hypertensive rat. The Journal of pharmacy and pharmacology 36, Pubmed: 6146669
  • Minson JB, de la Lande IS (1984)Metabolism of exogenous noradrenaline in slices of hypothalamus and caudate nucleus of the brush-tail possum, Trichosurus vulpecula. The Australian journal of experimental biology and medical science 62 ( Pt 3), Pubmed: 6497782
  • Lôo H, Scatton B, Dennis T, Benkelfat C, Gay C, Poirier-Littré MF, Garreau M, Vanelle JM, Olié JP, Deniker P (1983)[Study of noradrenaline metabolism in depressed patients by the determination of plasma dihydroxyphenylethylene glycol]. L'Encephale 9, Pubmed: 6671452
  • Howes LG, Hodsman GP, Maccarrone C, Kohzuki M, Johnston CI (1989)Cardiac 3,4-dihydroxyphenylethylene glycol (DHPG) and catecholamine levels in a rat model of left ventricular failure. Journal of cardiovascular pharmacology 13, Pubmed: 2468969
  • Isidori M, Lavorgna M, Nardelli A, Parrella A (2005)Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of agricultural and food chemistry 53, Pubmed: 16218695
  • Elsworth JD, Roth RH, Redmond DE (1983)Relative importance of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol as norepinephrine metabolites in rat, monkey, and humans. Journal of neurochemistry 41, Pubmed: 6875564
  • Jackman G, Snell J, Skews H, Bobik A (1982)Effects of noradrenergic neuronal activity on 3,4-dihydroxyphenylethylene glycol (DHPG) levels. Quantitation by high performance liquid chromatography. Life sciences 31, Pubmed: 7176821
  • Loo H, Scatton B, Poirier MF, Benkelfat C, Dennis T, Vanelle JM, Garreau M, Sechter D (1985)[Study of the metabolism of cerebral noradrenaline in depressed patients by the assay of plasma dihydroxyphenylethylene glycol]. Presse medicale (Paris, France : 1983) 14, Pubmed: 3161030
Synthesis Reference: Hunter L W; Rorie D K; Yaksh T L; Tyce G M Concurrent separation of catecholamines, dihydroxyphenylglycol, vasoactive intestinal peptide, and neuropeptide Y in superfusate and tissue extract. Analytical biochemistry (1988), 173(2), 340-52.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
METABOLIGHTSMTBLC1387
HMDBHMDB00318
CHEMSPIDER82648
CHEBI1387
LIGAND-CPDC05576
PUBCHEM91528