Record Information
Version 1.0
Update Date 1/22/2018 12:54:54 PM
Metabolite IDPAMDB000119
Identification
Name: Uric acid
Description:Uric acid is a heterocyclic purine derivative that is the final oxidation product of purine metabolism. It is produced by the enzyme xanthine oxidase, which oxidizes oxypurines such as xanthine into uric acid.
Structure
Thumb
Synonyms:
  • 1H-Purine-2,6,8-triol
  • 2,6,8-Trihydroxypurine
  • 2,6,8-Trioxopurine
  • 2,6,8-Trioxypurine
  • 8-Hydroxyxanthine
  • Lithate
  • Lithic acid
  • Purine-2,6,8(1H,3H,9H)-trione
  • Purine-2,6,8-(1H,3H,9H)-trione
  • Trioxopurine
  • Urate
  • Uric acid
Chemical Formula: C5H4N4O3
Average Molecular Weight: 168.1103
Monoisotopic Molecular Weight: 168.028340014
InChI Key: LEHOTFFKMJEONL-UHFFFAOYSA-N
InChI:InChI=1S/C5H4N4O3/c10-3-1-2(7-4(11)6-1)8-5(12)9-3/h(H4,6,7,8,9,10,11,12)
CAS number: 69-93-2
IUPAC Name:2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione
Traditional IUPAC Name: uric acid
SMILES:O=C1NC2=C(N1)C(=O)NC(=O)N2
Chemical Taxonomy
Taxonomy DescriptionThis compound belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus.
Kingdom Organic compounds
Super ClassAlkaloids and derivatives
Class Not Available
Sub ClassNot Available
Direct Parent Alkaloids and derivatives
Alternative Parents
Substituents
  • Alkaloid or derivatives
  • Xanthine
  • Purinone
  • 6-oxopurine
  • Purine
  • Imidazopyrimidine
  • Pyrimidone
  • Pyrimidine
  • Heteroaromatic compound
  • Vinylogous amide
  • Imidazole
  • Azole
  • Urea
  • Lactam
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteropolycyclic compound
Molecular Framework Aromatic heteropolycyclic compounds
External Descriptors
Physical Properties
State: Solid
Charge:0
Melting point: > 300 °C
Experimental Properties:
PropertyValueSource
Water Solubility:0.06 mg/mL [YALKOWSKY,SH & DANNENFELSER,RM (1992)]PhysProp
LogP:-2.17 [NAHUM,A & HORVATH,C (1980)]PhysProp
Predicted Properties
PropertyValueSource
Water Solubility1.76 mg/mLALOGPS
logP-1.1ALOGPS
logP-1.5ChemAxon
logS-2ALOGPS
pKa (Strongest Acidic)7.61ChemAxon
pKa (Strongest Basic)-6.5ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area99.33 Å2ChemAxon
Rotatable Bond Count0ChemAxon
Refractivity45.63 m3·mol-1ChemAxon
Polarizability13.61 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations: Cytoplasm
Reactions:
Pathways:
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies)splash10-0537-0913400000-bd24364053510c462adeView in MoNA
GC-MSGC-MS Spectrum - GC-MS (4 TMS)splash10-052f-0603900000-8c1224738bed2608c262View in MoNA
GC-MSGC-MS Spectrum - GC-MS (3 TMS)splash10-0g59-5917000000-4b28946431495667844bView in MoNA
GC-MSGC-MS Spectrum - GC-MSNot Available
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Positive (Annotated)splash10-014i-0900000000-0525c12dc3951f55a2c8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Positive (Annotated)splash10-006w-9500000000-fe10d491ad634ca46332View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Positive (Annotated)splash10-0gbd-9100000000-d48a3e7919c385949313View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0900000000-971b5c8c5d975d306fedView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-016r-1900000000-72edb3607fe9beb9b805View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0zgi-9500000000-753be769a0b48fc2960bView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0900000000-a4f5b18495486c5a1d5aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-01b9-1900000000-bc9e45f168dafb0d874cView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0006-9100000000-e01e386869d687364c61View in MoNA
MSMass Spectrum (Electron Ionization)splash10-002f-9200000000-e5abb655836214cc56b3View in MoNA
1D NMR13C NMR SpectrumNot Available
References
References:
  • Alderman M, Aiyer KJ: Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin. 2004 Mar;20(3):369-79. Pubmed: 15025846
  • Cacabelos R, Fernandez-Novoa L, Corzo L, Pichel V, Lombardi V, Kubota Y: Genomics and phenotypic profiles in dementia: implications for pharmacological treatment. Methods Find Exp Clin Pharmacol. 2004 Jul-Aug;26(6):421-44. Pubmed: 15349138
  • Eells JT, Spector R: Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res. 1983 Nov;8(11):1451-7. Pubmed: 6656991
  • Hanvivadhanakul P, Akkasilpa S, Deesomchok U: Efficacy of benzbromarone compared to allopurinol in lowering serum uric acid level in hyperuricemic patients. J Med Assoc Thai. 2002 Jun;85 Suppl 1:S40-7. Pubmed: 12188443
  • Inoue K, Namiki T, Iwasaki Y, Yoshimura Y, Nakazawa H: Determination of uric acid in human saliva by high-performance liquid chromatography with amperometric electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Feb 25;785(1):57-63. Pubmed: 12535838
  • Iwai N, Mino Y, Hosoyamada M, Tago N, Kokubo Y, Endou H: A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004 Sep;66(3):935-44. Pubmed: 15327384
  • Kanbay M, Akcay A, Huddam B, Usluogullari CA, Arat Z, Ozdemir FN, Haberal M: Influence of cyclosporine and tacrolimus on serum uric acid levels in stable kidney transplant recipients. Transplant Proc. 2005 Sep;37(7):3119-20. Pubmed: 16213325
  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M. (2012). "KEGG for integration and interpretation of large-scale molecular data sets." Nucleic Acids Res 40:D109-D114. Pubmed: 22080510
  • Kastenbauer S, Koedel U, Becker BF, Pfister HW: Oxidative stress in bacterial meningitis in humans. Neurology. 2002 Jan 22;58(2):186-91. Pubmed: 11805243
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Kirschbaum B: Correlation studies of plasma paraoxonase activity and uric acid concentration with AAPH-Induced erythrocyte hemolysis in hemodialysis patients. Artif Organs. 2004 Mar;28(3):259-64. Pubmed: 15046624
  • Marinaki AM, Champion M, Kurian MA, Simmonds HA, Marie S, Vincent MF, van den Berghe G, Duley JA, Fairbanks LD: Adenylosuccinate lyase deficiency--first British case. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1231-3. Pubmed: 15571235
  • Mazzali M: Uric acid and transplantation. Semin Nephrol. 2005 Jan;25(1):50-5. Pubmed: 15660335
  • Puig JG, Torres R, Ruilope LM: AT1 blockers and uric acid metabolism: are there relevant differences? J Hypertens Suppl. 2002 Jun;20(5):S29-31. Pubmed: 12184060
  • Simkin PA, Hoover PL, Paxson CS, Wilson WF: Uric acid excretion: quantitative assessment from spot, midmorning serum and urine samples. Ann Intern Med. 1979 Jul;91(1):44-7. Pubmed: 464453
  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. Pubmed: 19212411
  • Srinivasan S, Kalaiselvi P, Sakthivel R, Pragasam V, Muthu V, Varalakshmi P: Uric acid: an abettor or protector in calcium oxalate urolithiasis? Biochemical study in stone formers. Clin Chim Acta. 2005 Mar;353(1-2):45-51. Pubmed: 15698589
  • Sysyn GD, Rozycki HJ: Lack of prognostic significance of early elevated serum uric acid levels in low birthweight infants. Biol Neonate. 2003;83(4):253-7. Pubmed: 12743454
  • Tumgor G, Arikan C, Kilic M, Aydogdu S: Frequency of hyperuricemia and effect of calcineurin inhibitors on serum uric acid levels in liver transplanted children. Pediatr Transplant. 2006 Sep;10(6):665-8. Pubmed: 16911488
  • van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., Hankemeier, T. (2007). "Microbial metabolomics: toward a platform with full metabolome coverage." Anal Biochem 370:17-25. Pubmed: 17765195
  • Williams KP, Galerneau F: The role of serum uric acid as a prognostic indicator of the severity of maternal and fetal complications in hypertensive pregnancies. J Obstet Gynaecol Can. 2002 Aug;24(8):628-32. Pubmed: 12196841
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
Synthesis Reference: Brenner-Holzach, O.; Leuthardt, F. Uric acid formation from glucose carbon in Drosophila melanogaster. Preliminary report. Helvetica Chimica Acta (1963), 46(4), 1426-8.
Material Safety Data Sheet (MSDS) Download (PDF)
External Links:
ResourceLink
CHEBI ID17775
HMDB IDHMDB00289
Pubchem Compound ID1175
Kegg IDC00366
ChemSpider ID1142
WikipediaUric acid
BioCyc IDURATE
EcoCyc IDURATE
Ligand ExpoURC

Enzymes

General function:
Involved in flavin adenine dinucleotide binding
Specific function:
Xanthine + NAD(+) + H(2)O = urate + NADH
Gene Name:
yagS
Locus Tag:
PA1932
Molecular weight:
35.6 kDa
Reactions
Xanthine + NAD(+) + H(2)O = urate + NADH.
Hypoxanthine + NAD(+) + H(2)O = xanthine + NADH.
General function:
Involved in oxidoreductase activity
Specific function:
Presumed to be a dehydrogenase, but possibly an oxidase. Participates in limited purine salvage (requires aspartate) but does not support aerobic growth on purines as the sole carbon source (purine catabolism). Deletion results in increased adenine sensitivity, suggesting that this protein contributes to the conversion of adenine to guanine nucleotides during purine salvage
Gene Name:
xdhA
Locus Tag:
PA1524
Molecular weight:
52.9 kDa
Reactions
Xanthine + NAD(+) + H(2)O = urate + NADH.
Hypoxanthine + NAD(+) + H(2)O = xanthine + NADH.
General function:
Involved in flavin adenine dinucleotide binding
Specific function:
Presumed to be a dehydrogenase, but possibly an oxidase. Participates in limited purine salvage (requires aspartate) but does not support aerobic growth on purines as the sole carbon source (purine catabolism)
Gene Name:
xdhB
Locus Tag:
PA1523
Molecular weight:
87.7 kDa
Reactions
Xanthine + NAD(+) + H(2)O = urate + NADH.
Hypoxanthine + NAD(+) + H(2)O = xanthine + NADH.
General function:
Not Available
Specific function:
Not Available
Gene Name:
paoA
Locus Tag:
PA1931
Molecular weight:
18.3 kDa